Univariate Interpolation-based Modeling of Power and Performance
نویسندگان
چکیده
Performance and power scale non-linearly with device utilization, making characterization and prediction of energy efficiency at a given load level a challenging issue. A common approach to address this problem is the creation of power or performance state tables for a pre-measured subset of all possible system states. Approaches to determine performance and power for a state not included in the measured subset use simple interpolation, such as nearest neighbor interpolation, or define state switching rules. This leads to a loss in accuracy, as unmeasured system states are not considered. In this paper, we compare different interpolation functions and automatically configure and select functions for a given domain or measurement set. We evaluate our approach by comparing interpolation of measurement data subsets against power and performance measurements on a commodity server. We show that for non-extrapolating models interpolation is significantly more accurate than regression, with our automatically configured interpolation function improving modeling accuracy up to 43.6%.
منابع مشابه
Reducing the Power Consumption in Flash ADC Using 65nm CMOS Technology
Today, given the extensive use of convertors in industry, reducing the power consumed by these convertors is of great importance. This study presents a new method to reduce consumption power in Flash ADC in 65nm CMOS technology. The simulation results indicate a considerable decrease in power consumption, using the proposed method. The simulations used a frequency of 1 GHZ, resulting in decreas...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EAI Endorsed Trans. Energy Web
دوره 3 شماره
صفحات -
تاریخ انتشار 2016